
Zano: Confidential Assets Scheme for RingCT and
Zarcanum

sowle1,
1Zano project, val@zano.org

February 2024∗

Abstract

In this paper, we describe a practical way of implementing confidential assets (a.k.a. tokens or colored
coins) in Zano with unlimited decoy mixing capability and hidden amounts, as an extension to the Ring
Confidential Transactions scheme. Our approach preserves public verifiability that no transaction either
creates or destroys coins. We further extend this approach to show how it can be combined with
Zarcanum, a Proof-of-Stake scheme for transaction with hidden amounts.

1 Introduction
The Zano project is heading towards a major privacy update, planned for March 2024. With this update

and the subsequent blockchain hard-fork, all newly created transaction outputs will feature hidden amounts,
yet it will still be possible to stake them in a fully anonymous manner. At the same time, it will become
possible to transfer multiple asset types within a single transactions. In this paper, we describe our approach,
which is based on the concept of confidential assets with blinded assets tags originally proposed in [10]. We
demonstrate how we maintain public verifiability that no assets are created or destroyed, while concealing
both the output amounts and the output asset types.

2 Notation
Let G denote the main subgroup of the Ed25519 curve and let Zp denote a ring of integers modulo p.
Let l be the order of G: l = #G = 2252 + 27742317777372353535851937790883648493.
For any set X, x $← X means uniform sampling of x at random from X.
Hs is a scalar hash-function: Hs : {0, 1}∗ → Zl

Hp is a deterministic hash function: Hp : {0, 1}∗ → G.
G,H,X,U ∈ G are fixed group generators with no efficiently-computable discrete logarithm relations

selected uniformly at random (unless stated otherwise).

3 Confidential Assets construction

3.1 Asset descriptor
Our approach is based on the concept of confidential assets with blinded assets tags originally proposed

in [10] and adapted in [3]. Here we briefly describe the concept.
In a normal confidential transaction each output’s amount a is committed to in amount commitment A

using additively homomorphic Pedersen commitment (see also [9]):

A = aH + fG

where f ∈ Zl is a random blinding factor.
∗Version 1.1. Last update: 2024-02-05.

1



The idea is to use a unique amount-bonded generator Ht
1 for each asset t instead of the generator H.

So the amount a for the asset t is committed to in

At = aHt + fG

To publicly and unambiguously link an asset with the corresponding generator Ht, the latter is calculated
as

Ht = Hp(asset_descriptor_t)

where asset_descriptor_t is data structure (Fig. 1), containing the information associated with the given
asset, such as unique name, ticker, emission parameters, etc. Asset descriptor is explicitly put into the
blockchain when an asset is registered, so that blockchain observers can calculate corresponding asset tags
Ht and keep track of all existed asset types for further verifications.

Fig. 1. Asset descriptor and asset operation data structures outline

Note, that {Ht} should have no efficient-computable discrete logarithm relations with themselves and
other generators.

For native Zano coins we use predefined asset tag Hnative = H.

3.2 Hiding the real asset
Outputs’ asset tags are necessary for verification. However, instead of disclosing asset tag Ht for each

output, we disclose the blinded asset tag T , because otherwise it would be possible for observers to learn
the type of a corresponding asset from it.

Blinded asset tag T is calculated as

T = Ht + sX = Hp(asset_descriptor_t) + sX

where s = Hs(...) is a pseudo-random mask, known only to the output’s owner and the sender.

3.3 Transaction structure
The structure of a typical transaction with confidential assets support is shown on Fig. 2. It has m

inputs, each referring to a ring of size n, and k outputs. The index of a real output is denoted by π ∈ [0, n)
(assuming, it’s distinct for each input).

Note, that each input of a non-mining transaction can be either one of two possible types: 1) new ZC -
input2 with hidden amount and asset type, or 2) old so-called bare input with explicit amount and no asset
support, as used in the original CryptoNote protocol [11]. ZC-inputs can only refer to ZC-outputs in their
rings, and bare inputs can only refer to old CryptoNote-style outputs with explicit amounts. While each
bare input requires an NLSAG signature, as in the original CryptoNote, each ZC-input requires d/v-CLSAG3

signature.
Public verifiability that no assets are created or destroyed, while hiding both the output amounts and the

output asset types, is retained with the combination of balance proof, range proofs and asset tags surjection
proof which will be discussed below.

1In [10] such generators are called asset tags. In this paper we use terms asset tag and asset id interchangeably.
2ZC signature stands for Zarcanum-aware CLSAG signature. The same acronim is used for corresponding inputs and

outputs.
3d/v-CLSAG is the CLSAG[5] extension described in [12].

2



Fig. 2. Transaction with Confidential Assets, employing both ZC inputs and old bare inputs

3.4 Ring signature construction
For ZC-inputs we use RingCT approach ([7], [8]) of using pseudo output commitment to implement

simple balance proof, while hiding the commitment of the real output. In addition to pseudo output
amount commitment AP

i = aiT
i
π + f ′

iG we use pseudo output blinded asset tag TP
i = T i

π + r′iX, where f ′
i , r

′
i

are pseudo-random blinding masks.
To prove that TP corresponds to ring asset tag Tπ with the same index π as stealth address Pπ and

amount commitment Aπ we use additional layer of the ring signature:

Tπ − TP = −r′X

For the ring signature itself we use d/v-CLSAG ([12]) instead of standard d-CLSAG signature, because this
additional layer employs different group generator (X). Namely, we use 3/2-CLSAG: two generators (G,X)
in a 3-layer arrangement (G,G,X).

3.5 Asset registration, emission, and public burning
All asset operations are conducted by sending a transaction with an asset operation (Fig. 1) data structure

in its extra section. A registered asset can be controlled by a master asset secret control key, and all
operations, except for the registration, require the asset operation structure to be signed with the asset
control key. This allows blockchain observers to verify the operations.

To emit an asset, one fills the mentioned data structures in the transaction’s extra to disclose the emission
amount ae, secretly calculates the blinding mask fe = Hs(domain_sep,mck,R), where mck is the master
control key, and then calculates the corresponding amount commitment:

Ae = aeHe + feG

To complete the asset emission transaction, one or several outputs with a blinded asset id corresponding to
He and with the total amount of ae should be added.

Similarly, to publicly burn ab amount of an asset with tag Hb, one does the same calculations:

Ab = abHb + fbG

Unlike the emission of an asset, for public burn operation to be balanced, one or several inputs, corresponding
to asset tag Hb and with the total amount of ab, should be added.

Asset registration operation can at the same time fully or partially emit the supply of an asset.

3



3.6 Balance proof
For each distinct asset t corresponding amounts in inputs and outputs should be balanced:∑

i:Hi=Ht

ai =
∑

i:Hh(i)=Ht

ei (1)

where mapping h : [0, k) → [0,m) maps indices of asset tags in outputs to indices of corresponding asset
tags in inputs.

Similarly, amounts of native coins should be balanced, including the transaction fee4 and bare inputs:∑
i:Hi=H

ai +
∑
j

bj =
∑

i:Hh(i)=H

ei + fee (2)

Thanks to homomorphism we can combine balance equations (1) and (2) into one using corresponding
commitments: (∑

j

bj − fee
)
·H +

m−1∑
i=0

AP
i −

k−1∑
j=0

Ej = sX (3)

To bring the balance equation to the most general form we need to include amount commitments for
asset emission (Ae) or for asset burning (Ab)5:(∑

j

bj − fee
)
·H +

m−1∑
i=0

AP
i +Ae −Ab −

k−1∑
j=0

Ej = sX (4)

Observers make sure that the equation above holds for some secret s using a Schnorr proof. Blinding masks
sj and yj in outputs are calculated using a shared secret6 so output’s receiver is able to reconstruct them.

To zero G-component in the left part of Eq. (4) we adjust one of blinding masks of pseudo output amount
commitment, f ′

j .

3.7 Asset tags surjection proof
Blinded asset tags T ′

j in outputs have to be restricted by additional proof to prevent malicious use.
For that purpose we use asset surjection proof scheme from [10], later improved in [3] with the help of
one-out-of-many variant of logarithmic membership proof by Groth, Bootle at al. [6][2][1]. We also use the
optimization, proposed in Section 1.3 in [4].

Given the set of pseudo output asset tags {T p
i }, i = 0 . . .m − 1 we prove that each output’s asset tag

{T ′
j}, j = 0 . . . k− 1 corresponds to one of them, i.e. we prove knowing a DL secret x with respect to X for

one of a public key in the set {T p
i − T ′

j}:
T p
i − T ′

j = xX

(where m is the number of inputs and k is the number of outputs).
According to [1], communication costs can be estimated as 4.1

√
k logm group elements and the same

amount of field elements if batching is used. Our implementation doesn’t use batching yet, resulting in
k(log4 m+ 2) group elements and k(3 log4 m+ 2) field elements.

In contrast, using the simplest case of non-aggregated ring signature would require km+1 field elements
(k ring signatures, each having a ring of size m and a shared Fiat-Shamir challenge).

3.8 Range proof aggregation
Using different generators T ′

j for each output commitment requires additional steps to aggregate range
proofs (otherwise we would need to use single range proof for each output which is very consuming). For each
output commitment Ej = ejT

′
j+yjG we provide additional commitment to the same amount E′

j = ejU+y′jG
(where U ∈ G is another fixed generator with no efficiently-computable discrete logarithm relation with
others), and a vector Schnorr proof of knowing DL ej , y

′′ in

Ej + E′
j = ej(T

′
j + U) + y′′G

which in total would require 1 group element E′
j and 2 scalars per output, and one scalar for a shared

Fiat-Shamir challenge and one aggregated range proof for all outputs.
4Here we assume that the transaction fee can only be paid in native coins, and its value is explicitly stated in transaction’s

extra.
5We assume that only one asset operation can be put into a transaction, hence either Ae or Ab may present in this equation,

but not both.
6Namely, as Hs(domain_sep,Hs(8vR, i)), where domain_sep is domain separation constant, v is recipient’s secret view

key, R is transaction public key, and i is output’s index.

4



3.9 Transactions with no ZC inputs and implications
Let’s consider an important7 case when a transaction has only m bare inputs and zero ZC inputs.
In such a case there’s no reason to hide real asset id in outputs using a non-zero blinding mask sj ,

because it’s obvious that all of them are Hnative = H. Thus, sj = 0 and the balance equation has zero X
component.

Also, in the absence of ZC inputs we cannot zero G component by adjusting pseudo output amount
blinding mask f ′

j . This also means, that we cannot do any asset operation within such a transaction.

Fig. 3. Transaction with Confidential Assets, employing only CryptoNote-style bare inputs with explicit amounts

Considering all of mentioned above, we finally got simplified balance proof equation:

(∑
j

bj − fee
)
·H −

k−1∑
j=0

Ej = xgG (5)

As in the previous case, observers make sure that the equation above holds for some secret xg using a
Schnorr proof. As before, blinding masks yj in outputs are calculated using a shared secret8 so output’s
receiver is able to reconstruct them.

Note, that such a transaction generates ZC outputs with explicit asset id. If another transaction will
spend only such outputs with explicit native coins asset id (with or without any bare inputs) it will mean
that all outputs of such a transaction have native coin asset id as well. We detect such scenarios and enforce
using explicit asset id for such obvious outputs with consensus-level rules, because we believe that eventually
it will help improving the privacy.

3.10 Zarcanum Proof-of-Stake mining transaction
In this section, we discuss how the Zarcanum Proof-of-Stake scheme for confidential transactions, sug-

gested in [13], can be implemented for transactions with confidential assets. Fig. 4 shows the simplest
Zarcanum transaction supporting Confidential Assets. We assume that only native coins can be staked to
mine a PoS block.

Let us recall the main concept of Zarcanum. A staker periodically checks all his unspent outputs in the
wallet against the PoS win condition. Once satisfied, the staker has an opportunity to create a PoS block,
sign the miner transaction with a Zarcanum signature, broadcast it, and receive the block reward.

Zarcanum signature requires adding two additional layers to the ring signature:

1. a proof of knowing the DL secret of C −Aπ −Qπ with respect to X;

2. a proof of knowing the DL secret of Qπ with respect to G;

where C is specially constructed extended amount commitment (please, refer to Zarcanum whitepaper [13]
for more details). Here we effectively have a 5-layer (G,G,X,X,G) arrangement for the ring signature, with

7In Zano ZC outputs are allowed only after Zarcanum hardfork, hence at the very moment of the hardfork there won’t be
a single ZC output in the blockchain.

8Namely, as Hs(domain_sep,Hs(8vR, i)), where domain_sep is domain separation constant, v is recipient’s secret view
key, R is transaction public key, and i is output’s index.

5



Fig. 4. The simplest Zarcanum PoS mining transaction with Confidential Assets support

only two distinct generators being used. Thus, it’s reasonable to employ a d/v-CLSAG signature, namely,
the 5/2-CLSAG ([12]).

Additional group element Q, calculated for each ZC output, is necessary to preserve sender-receiver
anonymity in Zarcanum.

Note that all outputs of the transaction on Fig. 4 have an explicit asset id, because there are no other
inputs and staking is only allowed for native coins. Using such PoS miner transactions may negatively impact
blockchain anonymity, because it spends a stake output with a possibly non-explicit asset id (r0 ̸= 0), but
instead it creates one or several outputs with an explicit asset id. This problem can be solved by adding an
arbitrary ZC-input with a non-explicit asset id to the PoS mining transaction, as shown in Fig. 5.

Fig. 5. Zarcanum PoS mining transaction with Confidential Assets support and improved anonymity. Note that
r1 ̸= 0

Note, that balance proof for such PoS miner transactions should take block reward into account, which
is a trivial modification, because reward is public knowledge and nominated in native coins only.

4 Possible attack vector and mitigation
Asset tag concept is sensitive to cryptographic properties of the deterministic hash function Hp. Namely,

we need to ensure that there’s no efficiently-computable way to solve the following problem A:

Problem A: Let Ht = Hp(T0). Given Ht and T0 find x, y such that:

Hp(x) = yHp(T0) = yHt

Otherwise one would be able to generate arbitrary amount of assets while still keeping Eq. 4 hold.

6



The complexity of brute force attacks (including MITM) can possibly be increased by using computational-
expensive hash function He to calculate asset-specific generator Ht:

Ht = Hp(He(asset_descriptor_t))

because normally the calculation of Ht is a rare operation and its result can be cached.

5 Efficiency
Let’s try to estimate size of the all signatures and proofs for a transaction with m ZC inputs (each having

n elements in its ring) and k outputs.

Parameter G Zl

Inputs (main key images) m

Pseudo output commitments 2m

Ring signature (3/2-CLSAG) 2 m(2n+ 1)

Outputs’ range proofs (BP+) k+[(2 · ⌈log2(64) + log2(1)⌉+3)] 2k + 4

Asset surjection proof k(log4 m+ 2) k(3 log4 m+ 2)

Balance proof 2

Outputs’ data (except proofs) 4k k

Total 3m+ 7k + k log4 m+ 17 m(2n+ 1) + 3k log4 m+ 5k + 6

Table 1: Transaction size estimation. G means the number of group elements, Zp means the number of field
elements.

References
[1] Jonathan Bootle and Jens Groth. Efficient Batch Zero-Knowledge Arguments for Low Degree Poly-

nomials. Cryptology ePrint Archive, Paper 2018/045. https://eprint.iacr.org/2018/045. 2018. url:
https://eprint.iacr.org/2018/045.

[2] Jonathan Bootle et al. Short Accountable Ring Signatures Based on DDH. Cryptology ePrint Archive,
Paper 2015/643. https://eprint.iacr.org/2015/643. 2015. url: https://eprint.iacr.org/2015/643.

[3] Pyrros Chaidos and Vladislav Gelfer. Lelantus-CLA. https://eprint.iacr.org/2021/1036.pdf. 2021.

[4] Muhammed F. Esgin et al. MatRiCT: Efficient, Scalable and Post-Quantum Blockchain Confidential
Transactions Protocol. https://eprint.iacr.org/2019/1287.pdf. 2019.

[5] Brandon Goodell, Sarang Noether, and Arthur Blue. Concise Linkable Ring Signatures and Forgery
Against Adversarial Keys. https://eprint.iacr.org/2019/654.pdf. 2019.

[6] Jens Groth and Markulf Kohlweiss. One-out-of-Many Proofs: Or How to Leak a Secret and Spend
a Coin. Cryptology ePrint Archive, Paper 2014/764. https://eprint.iacr.org/2014/764. 2014. url:
https://eprint.iacr.org/2014/764.

[7] Gregory Maxwell. Confidential Transactions. https://web.archive.org/web/20200502151159/https:
//people.xiph.org/~greg/confidential_values.txt (Archived 2020-05-02). 2015.

[8] Shen Noether, Adam Mackenzie, and Monero Core Team. Ring Confidential Transactions, MRL-0005.
https://web.getmonero.org/resources/research-lab/pubs/MRL-0005.pdf. 2016.

[9] Torben Pryds Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing.
https://www.cs.cornell.edu/courses/cs754/2001fa/129.PDF. 1992.

[10] Andrew Poelstra et al. Confidential Assets. 2018.

[11] Nicolas van Saberhagen. CryptoNote v 2.0. https://cryptonote.org/whitepaper.pdf. 2013.
7CLSAG compresses all additional layers.
8A ring signature for each output.

7

https://eprint.iacr.org/2018/045
https://eprint.iacr.org/2018/045
https://eprint.iacr.org/2015/643
https://eprint.iacr.org/2015/643
https://eprint.iacr.org/2021/1036.pdf
https://eprint.iacr.org/2019/1287.pdf
https://eprint.iacr.org/2019/654.pdf
https://eprint.iacr.org/2014/764
https://eprint.iacr.org/2014/764
https://web.archive.org/web/20200502151159/https://people.xiph.org/~greg/confidential_values.txt
https://web.archive.org/web/20200502151159/https://people.xiph.org/~greg/confidential_values.txt
https://web.getmonero.org/resources/research-lab/pubs/MRL-0005.pdf
https://www.cs.cornell.edu/courses/cs754/2001fa/129.PDF
https://cryptonote.org/whitepaper.pdf


[12] sowle. d/v-CLSAG: Extension for Concise Linkable Spontaneous Anonymous Group Signatures. https:
//hyle-team.github.io/docs/zano/dv-CLSAG-extension/dv-CLSAG-extension.pdf. 2024.

[13] sowle and koe. Zarcanum: A Proof-of-Stake Scheme for Confidential Transactions with Hidden Amounts.
https://eprint.iacr.org/2021/1478.pdf. 2022.

8

https://hyle-team.github.io/docs/zano/dv-CLSAG-extension/dv-CLSAG-extension.pdf
https://hyle-team.github.io/docs/zano/dv-CLSAG-extension/dv-CLSAG-extension.pdf
https://eprint.iacr.org/2021/1478.pdf

	Introduction
	Notation
	Confidential Assets construction
	Asset descriptor
	Hiding the real asset
	Transaction structure
	Ring signature construction
	Asset registration, emission, and public burning
	Balance proof
	Asset tags surjection proof
	Range proof aggregation
	Transactions with no ZC inputs and implications
	Zarcanum Proof-of-Stake mining transaction

	Possible attack vector and mitigation
	Efficiency

